Initial biological evaluation of nanofiber and microwire biomaterials at Salimpour Site.

Dr. Salimpour Site |Due to the direct long-term contact with living tissue, the biocompatibility of implants is particularly demanding. In this context, biointegration of implants highly depends on cell colonialization on the surface or in the gap between implant and tissue, as well as cell

ResearchGate

Initial biological evaluation of nanofiber and microwire biomaterials

Initial biological evaluation of nanofiber and microwire biomaterials

Due to the direct long-term contact with living tissue, the biocompatibility of implants is particularly demanding. In this context, biointegration of implants highly depends on cell colonialization on the surface or in the gap between implant and tissue, as well as cell ingrowth in porous implant structures. Fibrous material is predestined based on two variable parameters, fiber thickness and pore size. Various applications in implant coating, stenting, wound treatment, bone surgery, or cardiovascular field are possible. Coating with cell-friendly material can significantly improve the biocompatibility of the underlying material. In this study, the biocompatibility of medical device